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Abstract 23 

We present the collective evaluation of the regional scale models that took part in the fourth edition of the 24 

Air Quality Model Evaluation International Initiative (AQMEII). The activity consists of the evaluation and 25 

intercomparison of regional scale air quality models run over North American (NA) and European (EU) 26 

domains in 2016 (NA) and 2010 (EU). The focus of the paper is ozone deposition. The collective consists in 27 

an operational evaluation (Dennis et al., 2010, namely a direct comparison of model-simulated predictions 28 

with monitoring data aiming at assessing model performance. Following the AQMEII protocol and Dennis 29 

et al. (2010), we also perform a probabilistic evaluation in the form of ensemble analyses and an 30 

introductory diagnostic evaluation. The latter, analyses the role of dry deposition in comparison with 31 

dynamic and radiative processes and land-use/land-cover types (LULC), in determining surface ozone 32 

variability. Important differences are found across deposition results when the same LULC is considered. 33 

Furthermore, we found that models use very different LULC masks, thus introducing an additional level of 34 

diversity in the model results.  The study stresses that, as for other kinds of prior and problem-defining 35 

information (emissions, topography or land-water masks), the choice of a LULC mask should not be at 36 

modeller’s discretion. Furthermore, LULC should be considered as variable to be evaluated in any future 37 

model intercomparison, unless set as common input information. The differences in LULC selection can 38 

have a substantial impact on model results, making the task of evaluating deposition modules across 39 

different regional-scale models very difficult. 40 

 41 
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1. Introduction 47 

This paper presents the results of the operational and probabilistic evaluation of the 48 

regional scale models taking part in the Air Quality Model Evaluation International Initiative phase 49 

4 (AQMEII4) activity. As presented in Galmarini et al. (2021), the AQMEII4 focus is deposition 50 

process modelling within regional scale models (AQMEII4-Activity 1) as well as standalone 51 

deposition modules (AQMEII4-Activity 2) as detailed in Clifton et al., (2023).  52 

As traditionally done in past editions of the AQMEII activity, and in agreement with the 53 

protocol described by Dennis et al. (2010), prior to any detailed analysis of specific process 54 

modelling (diagnostic evaluation), a thorough analysis of the overall performance of the model 55 

must be conducted via operational and probabilistic evaluation. The scope of such an approach is 56 

to verify the positioning of the models participating in AQMEII with respect to observations or any 57 

other model simulating the case study or against a multi-model ensemble (Galmarini et al. 2013). 58 

Such an analysis has the scope of assisting the interpretation of any other detailed result in this 59 

paper or other contribution to the special issue and understanding how the different processes 60 

contribute to the model spread. Examples of this approach can be found in Solazzo et al. (2012a 61 

and b), Vautard et al. (2012), Im et al. (2015, 2018), Giordano et al. (2015), Brunner et al. (2015), 62 

and Kioutsioukis et al. (2016). The evaluation also provides important context for the 63 

interpretation of diagnostic results – for example, the contrast in diagnostic comparisons between 64 

models with higher and lower evaluation performance helps to identify specific processes which 65 

may contribute to the differences (an example of this approach appears in Makar et al. (2024), 66 

this issue, for sulphur and nitrogen deposition, and Vivanco et al. (2018)). 67 

Since the operational and probabilistic analysis is instrumental to the interpretation of 68 

ozone deposition-related results (the focus of the fourth edition of AQMEII), we shall concentrate 69 

on the variables that are directly or indirectly connected to description of deposition processes 70 

within the models: namely, atmospheric concentrations, LULC masks and meteorology. A detailed 71 

diagnostic analysis of modelled ozone dry deposition can be found in Hogrefe et al. (2025, this 72 

issue).  73 

 74 

 75 

 76 
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2. Models, domains, and years of consideration 77 

The setup of the AQMEII4 Activity 1 is detailed in Galmarini et al. (2021). In essence, the 78 

activity consists of running regional scale models on the North American (NA) and European (EU) 79 

domains for the years (2010, 2016) and (2009, 2010) respectively. The models that took part in 80 

AQMEII4 are listed in Table 1, where details on the institutions in charge and the cases simulated 81 

are also provided. These models and in particular their deposition schemes are described more in 82 

detail in Galmarini et al. (2021, this issue) and Makar et al. (2024, this issue).  Note that simulations 83 

took place with harmonized input emissions fields; all models started with the same 84 

anthropogenic, lightning NOx, and forest fire emissions inventory for North America and Europe, 85 

respectively (Galmarini et al., 2021), while biogenic emissions and other natural sources of 86 

emissions such those of sea-salt particles were carried out as part of internal model processing 87 

and should be considered “part of the model” in the analysis that follows. 88 

The analysis described here will focus on two year-long simulations: 2016 for the NA case 89 

and 2010 for the EU case. The following aspects will be considered in detail in this paper: 90 

● Analysis of space and/or time averaged ozone concentrations  91 

● Analysis of seasonal, diurnal, and spatial variations of ozone (and to a lesser extent nitric 92 

oxide, and nitrogen dioxide concentrations, in order to assist in the ozone analysis). 93 

● Ensemble analysis of modelled ozone concentrations 94 

● The role of variability in effective fluxes for specific pathways in determining the variability 95 

of ozone dry deposition flux over different LULC types 96 

● The role of variability in wind speed, mixed layer height, dry deposition, and radiation in 97 

determining the variability of ozone concentrations at the surface. 98 

 99 

Model values will be evaluated against ozone and precursor concentrations collected by 100 

regional operational networks during the year in consideration. More specifically, for North 101 

America the monitoring network databases employed included: the U.S. Environmental Protection 102 

Agency’s Air Quality System (AQS; https://aqs.epa.gov/aqsweb/airdata/download_files.html), the 103 

Canadian National Air Pollution Surveillance (NAPS) program (https://www.canada.ca/en/environment-104 

climate-change/services/air-pollution/monitoring-networks-data/national-air-pollution-program.html), 105 

and the Canadian National Atmospheric Chemistry database (https://www.canada.ca/en/environment-106 

climate-change/services/air-pollution/monitoring-networks-data/national-atmospheric-chemistry-107 

database.html). For the European case: the European Monitoring and Evaluation Programme 108 
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(EMEP; https://www.emep.int/), and the European Air Quality Database (AIRBASE;  109 

https://eeadmz1-cws-wp-air02-dev.azurewebsites.net/download-data/).  110 

Given the continental dimension of the two regional domains simulated under AQMEII-4, the 111 

latter have been divided into sub-regional domains for analysis. These group portions of the 112 

network that share common features such as atmospheric circulation and possible sources of 113 

ozone precursors, and also provide continuity with past AQMEII model evaluation phases (Solazzo 114 

et al. 2012a and b).  115 

Figure 1 shows the sub-regions selected within the two modelling domains, the corresponding 116 

sampling sites and the yearly average measured ozone (a and b). As noted by Solazzo et al (2012a), 117 

from the distributions of the pollutants, it is easy to identify the reason for those specific divisions 118 

in subdomains. In North America, a longitudinal divide is present between western (R1), central 119 

(R2) and eastern parts of the continent while the latter also requires a latitudinal division in two 120 

smaller subdomains (R3 and R4) due to the different kind of precursors’ distributions and 121 

consequent ozone formation potentials. In Europe, the spatial distribution of emitters is different 122 

from North America and has greater activity density. There exist areas that require specific 123 

attention being almost decoupled from the rest of the continental air shed. These are typically the 124 

Iberian Peninsula and southern Mediterranean basin (R4), the Po Valley (R3) and Eastern Europe 125 

(R2). These NA and EU analysis sub regions were first defined in Solazzo et al (2012a), though with 126 

lesser detail and have been used in subsequent AQMEII analyses (e.g., Hogrefe et al., 2018) with 127 

different subdivisions but with the same goal of identifying regions with more homogeneous 128 

chemical potentials. For the sake of synthesis and in the absence of direct measurement of ozone 129 

deposition, this paper will concentrate exclusively on the model performance with respect to 130 

ozone concentrations with a few references to nitrogen oxides to give a more comprehensive 131 

sense of the quality of the performance of the individual models and the ensemble. 132 

 133 

3. Operational evaluation 134 

3.1 Ozone surface air concentrations 135 

The model performances at continental level and for the whole year are presented in 136 

Figure 2-6. For the two continents, the Root Mean Square Error (RMSE) and Mean Bias (MB) are 137 

computed from hourly ozone values for the entire year and are shown for each model in Figure 2-138 

6 and Figure 7 for North America, and Figure 8, Figure 9 for Europe. Figure 10 shows the spatial 139 
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averages of the results presented in Figures 2 through 5 as box plot diagrams. In general, RMSE 140 

for the NA case (and in particular, for two models, namely NA7 (WRF-Chem (UPM)) and NA8 (WRF-141 

Chem (NCAR))) appears to be larger than the EU case. Note that, since ozone values are reported 142 

in ppb over NA and ug/m3 over EU, the range of the colour scales over both continents has been 143 

set such that the same colours represent the same absolute errors (note the difference in the 144 

numerical values for the colour bars for these figures), to account for unit differences and allow 145 

for a visual comparison between continents. Most differences from the observations are found in 146 

the eastern and south-eastern parts of the NA domain. As can be evinced from the Figure 2-5, 147 

three groups of behaviours can be distinguished for the NA case. Relative to the rest of the models, 148 

NA1, NA2, NA3 and NA5 (respectively WRF/CMAQ (M3Dry), WRF/CMAQ (STAGE), GEM-MACH 149 

(Base), GEM-MACH (Ops)) show low RMSE values and comparable behaviours. NA4 (GEM-MACH 150 

(Zhang)) and NA6 (WRF-Chem (RIFS)) show slightly higher errors in the mid to east coast part of 151 

the domain whereas NA7 (WRF-Chem (UPM)) and NA8 (WRF-Chem (NCAR)) show markedly higher 152 

errors in the mid to eastern part of the domain and along the west coast. Looking at the biases 153 

(Figure 3), the analysis presented above is confirmed with some nuances though. In fact, we can 154 

see that the grouping can be more refined. A first group is made of the two EPA models NA1 and 155 

NA2 (WRF/CMAQ (M3Dry) and WRF/CMAQ (STAGE)) with a widespread overestimation across the 156 

continent. NA3 and NA5 (GEM-MACH (Base) and GEM-MACH (Ops)) produce the smallest biases 157 

of the group (see also Figure 3 and with a clearer West-East regional separation compared to NA1 158 

and NA2. Finally, NA4, NA6, NA7 and NA8 (GEM-MACH (Zhang), WRF-Chem (RIFS), WRF-Chem 159 

(UPM), WRF-Chem (NCAR)) have larger biases, with NA8 having the largest mean bias (MB) of all 160 

(Figure 4). This analysis can also help to distinguish the impacts of different deposition modules 161 

from the impacts of differences in other aspects of the model on simulated ozone. For example, 162 

WRF/CMAQ (M3Dry) and WRF/CMAQ (STAGE) differ only in their dry deposition modules, and the 163 

differences between these two simulations are generally smaller than their differences relative to 164 

the GEM-MACH and WRF-Chem simulations. On the other hand, the deposition scheme has an 165 

important effect when we look at NA4 (GEM-MACH (Zhang)) vs. NA3 (GEM-MACH (Base)). These 166 

two models share the same regional scale system but use a different deposition scheme. The effect 167 

of the deposition scheme on the ozone concentration is quite remarkable. Recent work 168 

emphasizes a substantial effect of the magnitude of deposition velocity on ozone concentration 169 

(e.g. Baublitz et al. 2020; Wong et al., 2019; Clifton et al., 2020b), and the results are consistent 170 

with those in Clifton et al. (2023) where the individual deposition module performances were 171 

evaluated (see discussion below), where larger differences were noted between the Zhang and 172 
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Base schemes used in GEM-MACH than between the M3Dry and STAGE schemes used in CMAQ. 173 

Comparing NA3 (GEM-MACH (Base)) to NA5 (GEM-MACH (Ops)) reveals the impacts of model 174 

configuration and science option choices other than dry deposition, since both simulations use the 175 

Wesely scheme but differ in a number of other modelling aspects, as described in more detail in 176 

Makar et al. (2024). The relatively low MB for models NA3 and NA5 reflect two different 177 

approaches towards reducing ozone biases employed in the two different configurations of the 178 

model, with NA3 making use of a canopy shading and turbulence scheme (Makar et al., 2017), and 179 

the NA5 scheme making use of an operational configuration in which emitted area-source species 180 

are mixed uniformly into the first two model layers rather than input as a flux boundary condition.   181 

The effects of model configuration choices are also evident in the results of the three remaining 182 

models (WRF-Chem (RIFS), WRF-Chem (UPM), and WRF-Chem (NCAR)) that share the same 183 

deposition model and overall model code but utilize different configuration options. These 184 

simulations show a consistent overestimation that cannot be attributed clearly to one factor (see 185 

also Figure 5). The three implementations are also with respect to three different WRF-Chem 186 

version numbers (3.9.1, 4.0.3 and 4.1.2 respectively); the former use the Grell and Devenyi (2002) 187 

cumulus parameterization, the latter the Grell and Freitas (2014) parameterization, while both 188 

WRF-Chem (RIFS) and WRF-Chem (UCAR) employ the same gas–phase mechanism  (Emmons et 189 

al., 2010), while that of WRF-Chem (UPM) differs from the other two models.  The relatively minor 190 

differences between WRF-Chem (UPM) and WRF-Chem (UCAR) may thus reflect differences in the 191 

gas-phase chemistry (with the former’s mechanism resulting in slightly lower positive bias levels), 192 

and the larger differences with the RIFS implementation reflecting differing cloud amounts and 193 

hence differing photolysis rates within the two implementations. The large overestimation of 194 

ozone by the WRF-Chem (UCAR) configuration may thus be linked to the underestimated 195 

precipitation in this model reported elsewhere (e.g. Makar et al. 2024), which also implies smaller 196 

cloud amounts and stronger solar radiation.    197 

In Figures 4 and 5, RMSE and MB in Europe are presented, respectively. The errors have 198 

more a hot-spot character that is mainly evident in the southern part of the domain and therein 199 

at well-recognized critical regions like the Po Valley in the north of Italy, Greece and the Iberian 200 

Peninsula. This result is confirmed in the MB plots that also show EU3 (LOTOS/EUROS) as the best-201 

performing model of the four though in many cases underestimating ozone concentration levels. 202 

As for the rest of the domain, smaller RMSE values can be noticed throughout the region for all 203 

models with the only exception of EU1 (WRF/Chem (RIFS)) and EU4 (WRF/CMAQ (STAGE)) that 204 
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show comparatively larger errors, especially in the southern and northern parts of the domain 205 

respectively. This behaviour of EU1 and EU4 may be associated with the lower predicted NO2 and 206 

NO concentration for all European sub-regions (see Fig. S4) which in turn may result in positive 207 

biases in ozone if the lower NOx is resulting in reductions in the NOx titration of ozone at night.  208 

This effect is apparently exacerbated in the Po Valley area, which is known for high NOx emission 209 

levels. The observational sites in the Scandinavian Peninsula are mainly from the EMEP network 210 

which is representative of the remote background whereas the AirBase network rural background 211 

sites are more prone to local sources of pollution. 212 

In this case, a model implementation/user effect can be an element of consideration since the EU4 213 

is the same model that is used by EPA in the NA case (NA2), but in this instance run by the 214 

University of Hertfordshire. In the implementation of EU4, the primary differences lie in the 215 

meteorological model and the MEGAN biogenic emissions input. These variations in 216 

meteorological drivers and biogenic emissions can introduce differences, potentially contributing 217 

to the observed model biases when compared to other implementations of the same model.  218 

However, it should also be noted that the CMAQ simulations in North American (models NA1, NA2, 219 

Figure 3) also show positive biases, particularly along the US eastern seaboard.  As noted above in 220 

the discussion on models NA3 versus NA5, one possible cause for these biases may relate to the 221 

extent to which shading and turbulence within the forest canopy is accounted for in these models.  222 

The NA3 forest canopy parameterization mentioned above (Makar et al., 2017) is being ported to 223 

the CMAQ model in other work (Campbell et al., 2021, Wang et al., 2005); the reduced turbulence 224 

and reduced photolysis rates below forest canopies have been shown to result in increases in 225 

surface level NOx concentrations, and an extension of the diurnal NOx titration effect further into 226 

the daylight hours, significantly reducing surface ozone concentrations.  Many of the regions with 227 

the highest ozone biases in models EU1, EU2 and EU4 correspond to areas with high forest canopy 228 

and leaf area index values, as does the eastern seaboard of the USA and Canada, and the negative 229 

biases in EU1 and EU4 for NO and NO2 are consistent with the absence of the more realistic 230 

reduction in thermal diffusivity coefficients and photolysis rates expected under forest canopies 231 

(Makar et al., 2017).    232 

From the analysis of NO, NO2 and O3 Normalised Root Mean Square Error vs Mean Bias in 233 

the soccer plots of Figure S1 in the Supplementary Material (SM, from now on) for the two 234 

continents, we notice that the two precursors to ozone show an error smaller than 15% for most 235 

models. For the NA case, the ozone soccer plots confirm the grouping of the results qualitatively 236 
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derived from the regional analysis of Figure 2. Figure 6 shows that GEM-MACH models NA3 and 237 

NA5 have the bias values closest to zero, followed by CMAQ (NA1 and NA2), while CMAQ has the 238 

lowest RMSE values, closely followed by the GEM-MACH NA3 and NA5 implementations.    Four 239 

models show small error (<15%), two with medium (>15% and <20%) and two with high (>20%).  240 

The ozone goal plots for the EU (Figure S1) show a statistical tendency to produce smaller errors 241 

than the NA case and in particular more coherence between the errors for ozone and its 242 

precursors. 243 

The Taylor diagram depicted in Figure S2 in the SM also evaluates the correlation between 244 

simulated and observed ozone values. The results show a higher correlation of model predictions 245 

with observations in the EU case while the other statistical parameters in the diagram confirm 246 

what has been presented in the other plots. The multi model ensemble (MME) is also presented 247 

for the two cases, showing in both instances an improved performance with respect to the 248 

individual model simulations. 249 

Figure 7 shows a comparison of observed and modelled seasonal and diurnal cycles for 250 

ozone, NO and NO2. These cycles were constructed by averaging the underlying raw hourly data 251 

available for the entire year over a given month-of-year or hour-of-day, respectively. At the 252 

monthly level, the figure clearly shows that for ozone in NA, almost all models over-estimate the 253 

concentration during summer. The multi-model mean fails to reproduce the ozone maximum in 254 

April by overshooting by approximately 3 ppb and presenting a maximum in June. This result is 255 

driven by 4 out of 8 models (NA4 (GEM-MACH (Zhang)), NA6 (WRF-Chem (RIFS)), NA7 (WRF-Chem 256 

(UPM)) and NA8(WRF-Chem (NCAR))). Although slightly overestimating the concentration, two 257 

models (NA3 (GEM-MACH (Base)), and NA5 (GEM-MACH (Ops))) manage to reproduce very 258 

accurately the seasonal evolution. NA1 and NA2 (WRF/CMAQ (M3Dry) and WRF/CMAQ (STAGE)) 259 

capture the trend and seasonality and just slightly overestimate the ozone peak value.  260 

The tendency for overestimating ozone concentration and underestimating NO is also clear 261 

from Figure 7 (for NA) and Figure 8(for EU). Figure 7’s diurnal variation panels (right hand column) 262 

in particular show that the models NA3 and NA5 have the closest values to observations for O3, 263 

NO and NO2, though all models underestimate the NOx totals.  This is especially evident for NO 264 

and NO2 in the mid-day hours (10 to 18 local time), when the simulated NO and NO2 values are 265 

the closest in the ensemble to the observations.  The monthly variation panels (Figure 7 left 266 

column) show that the relative impact of the NOx underestimates is smaller in the summer than 267 

in the winter, and models NA3 and NA5 have the closest NO values to observations and slightly 268 
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overestimate NO2 in the summer.  Model NA3 includes forest canopy shading effects which reduce 269 

vertical turbulence, increase NOx levels, and decrease photolysis rates below the forest canopy.  270 

Model NA3 also includes the effects of vehicle-induced turbulence on NOx emissions from vehicles 271 

(Makar et al., 2021), an effect which results in more efficient dispersion of these emissions out of 272 

the surface layer.  Model NA5 assumes the area emissions of NOx are evenly and instantaneously 273 

distributed over the first two vertical levels of the model rather than incorporating these emissions 274 

as a flux boundary condition on the diffusion equation.  At least some of the superior performance 275 

for NA3 and NA5 may thus be related to the more rapid rate at which emitted NO and NO2 are 276 

transported upwards out of the model surface, as well as (model NA3) the use of the forest canopy 277 

shading parameterization. The ozone deposition velocity used in NA3 and NA5 versus that of NA4 278 

is also a driver for the differences between these models, as noted in Clifton et al. (2023), which 279 

noted that NA3 and NA5 shared a scheme which significantly overestimated ozone deposition 280 

velocities relative to observations in the summer while providing reasonable estimates during the 281 

winter, while the Zhang scheme, used in NA4, showed little seasonal variation (tending to be flat 282 

over time, with overestimates during winter, underestimates during summer).  It is of note that 283 

the models that reproduce the seasonal evolution of ozone most accurately during summer when 284 

the rest of the models struggle, have the deposition schemes with the largest positive biases in 285 

summertime ozone deposition velocity and the greatest seasonal amplitude (Clifton et al. 2023). 286 

This implies (1) that the factors affecting the ozone concentrations have a strong seasonal 287 

dependence (models NA4 versus NA3 and NA5), (2) and that while one means of helping achieve 288 

that seasonal dependence is through an overestimation of the ozone deposition velocity relative 289 

to observations (models NA3 and NA5), (3) other seasonally dependent process improvements 290 

than deposition velocity are required to better simulate ozone (given that the other models 291 

considered here which incorporate more accurate ozone deposition schemes, relative to the 292 

observations in Clifton et al. (2023) also have high positive biases in parts of NA and EU (Figure 3 293 

and Figure 5).   The forest canopy parameterization of Makar et al. (2017) is one such possible 294 

means of code improvement1, in that the associated decreases in near-surface coefficients of 295 

                                                           
1 We note that subsequent investigation at ECCC of the GEM-MACH deposition algorithm described in Makar et al. 

(2018), following the results published in Clifton et al (2023) identified two key errors added to the code in the 
version subsequent to the code version used in Makar et al (2017).  Specifically, the cuticle resistance formula 
(Makar et al, 2018 equation S.8, Clifton et al (2023) equation (42) made use of Zhang et al (2002) dry cuticle 
resistance coefficients (rcuti, rlu) which should not have been scaled by inverse leaf area index, and made use of 
Zhang et al (2002) coefficients for the lower canopy resistance (Makar et al, 2018 equation (S.2), Clifton et al 2023 
equation (44) which did not include the required scaling of the coefficients by (LAI^0.25)/(u*)^2.  Subsequent to 
these corrections, a much closer fit to the observations in Clifton et al. (2023) was achieved.  (K. Toyota, A. 
Robichaud, personal communication, 2024). 
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thermal diffusivity and photolysis rates depend on the leaf-area index of the vegetation, which is 296 

highly dependent on seasonality for deciduous forests.  The other consideration worth examining 297 

is the interdependence between model cloud cover and surface photolysis rates, given the 298 

variation between NA WRF-Chem models NA6, NA7, and NA8, where the largest differences in 299 

ozone positive bias correspond to the use of differing cloud parameterizations. 300 

For NO and NO2, the models show seasonal cycles which differ between the models (Figure 301 

7, Figure 8, left-hand columns) versus the observations and between the NA and EU observations.  302 

Observed NA ozone peaks in April (month 4, Figure 7 upper left panel), while observed EU ozone 303 

peak in July (month 7, Figure 8 upper left panel).  As noted above, models NA1, NA2, NA3, and 304 

NA5 all capture the NA O3 seasonality (CMAQ and Base and Ops GEM-MACH configurations) while 305 

the WRF-Chem models predict a late summer peak, similar to observations in EU.  All models tend 306 

to overestimate compared to observed ozone concentrations (exceptions:  NA3 and NA5 in April 307 

and May, Figure 7, EU2 and EU3 from November to April).  All models underestimate wintertime 308 

NOx (though NA models NA1, NA2, NA3, NA5, and NA7 have close NO2 performance to 309 

observations from July through October, Figure 7), and EU3 NO values closely match observations, 310 

while EU2 NO2 is biased high relative to observations.  All NA models have significant (factor of 311 

two or more) negative biases in NO, and the largest seasonal NO2 negative biases in winter.  As a 312 

consequence, all NA models strongly underestimate the amplitude of the observed seasonal cycle. 313 

Figure 8 also shows that the models with the smallest NO and NO2 biases (EU2 (WRF-Chem (UPM)) 314 

and EU3 (LOTOS/EUROS)) do quite well for O3, NO and NO2), and the EU NO and NO2 biases for 315 

these models are in general much smaller than the NA model biases.  At the diurnal level (Figure 316 

7, Figure 8 right panels) the results are consistent with what is found at the seasonal level in terms 317 

of over- or underestimations. At the diurnal level, EU2 outperforms the others showing a good 318 

capacity of catching the average time evolution of the three pollutants. 319 

One overall conclusion from the comparisons with observations for NO, NO2 and O3 is that 320 

the models which most closely match NO and NO2 (EU2, EU3) also have the best performance for 321 

O3, that those models with negative biases for NO and NO2 also have positive biases for O3, and 322 

that the magnitude of the NOx negative biases is inversely proportional to the magnitude of the 323 

O3 positive biases, for all models.  The relative magnitude of the “freshly emitted” component of 324 

NOx (i.e. NO) tends to be underestimated, with the exception of model EU3 (LOTOS/EUROS).  325 

These results all point towards excessive vertical mixing of fresh NO emissions up from the lowest 326 

model layer as a root cause of the model biases in the other models.  The reasons for this 327 
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conclusion are: (1) the relative fraction of NOx that is NO will be highest in air dominated by fresh 328 

emissions; (2) the relationship between positive ozone biases and negative NO biases indicates 329 

that the ozone biases are due to insufficient NO titration; (3) the effect is exacerbated in winter in 330 

all NA models and some EU models - a time when the atmosphere tends to be more stable, and 331 

photolysis rates in the northern hemisphere are low, both conditions which favour NOx titration.    332 

A secondary cause may be missing NO emissions in the wintertime, though this seems less likely 333 

due to the relatively high confidence in mobile emissions and stack which dominate the NOx 334 

emissions totals, and the relatively good performance of EU3 relative to the other EU models when 335 

making use of the same emissions inventory.   336 

The monthly averaged ozone, NO and NO2 concentrations breakdown at the sub regional 337 

level are presented in Figures 5 and 6 for NA and EU, respectively. From Figure 9 one can conclude 338 

that the major contribution to the domain-wide estimation presented earlier is essentially coming 339 

from region R2, R3 and R4 (i.e. the eastern part of the domain) whereas all model results in R1 are 340 

rather similar and in agreement with the measurements throughout the year with some models 341 

overestimating cold seasons but by a lesser extent than in the other regions. The summertime 342 

ozone overestimation over the Eastern U.S. for NA1 and NA2 (WRF/CMAQ (M3Dry) and 343 

WRF/CMAQ (STAGE)) is consistent with the findings of Appel et al. (2021).  It is also worth noting 344 

that all of the NA models (Figure 9) overestimate O3 in the period from July through September in 345 

regions R2, R3, R4; an observed effect largely absent in the EU models (Figure 10). These regional 346 

differences will be instrumental to the analysis of deposition processes. The same behaviour 347 

observed in sub regions is found at both the seasonal and hourly level. From Figure 10 we can see 348 

the situation in Europe, which lacks the large positive biases in the NA simulations.  349 

 350 

3.2 Ozone deposition fluxes 351 

We start our examination of O3 deposition fluxes with the direct comparison of the 352 

effective and total fluxes calculated by the models. Effective flux is a convenient way of examining 353 

the contribution of the resistances of various pathways towards bulk deposition, taking into 354 

account that variability is not only in these resistances but also surface ozone concentrations 355 

(Galmarini et al., 2021). The definition of effective fluxes is analogous to the definition of effective 356 

conductances (Paulot et al., 2018; Clifton et al., 2020b). Specifically, by definition, the sum of the 357 

effective fluxes equals the total ozone dry deposition flux, and this equality is used in the 358 
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subsequent analysis. Within AQMEII4, the relevant effective conductances were defined a priori 359 

and every participating modelling group was requested to determine the combination of all 360 

relevant resistances accounted for in their systems, necessary to produce the effective 361 

conductances requested. The definitions of the effective conductances, the deposition modelling 362 

approaches and the detailed formulation of effective fluxes for each model are presented in 363 

Galmarini et al. (2021, this issue). Because effective conductances and ozone concentrations can 364 

co-vary on daily timescales, it was important to archive high-frequency effective fluxes; for this 365 

same reason, conclusions about drivers of variations in effective fluxes may be distinct from those 366 

regarding effective conductances. The analysis of effective and total fluxes is performed only for 367 

the grid cells in where all models share the same LULC (for details on the common LULC 368 

classifications see Galmarini et al. (2021, this issue)). By restricting the analysis to locations sharing 369 

the same characteristics of land use across models, we reduce the impact of LULC variability on 370 

the resulting analysis, thus allowing us to compare only the response of models to the different 371 

deposition schemes employed for a given LULC. We present model results at grid cells that are 372 

covered by at least 85% of respectively, Evergreen Needleleaf Forest (NA: 1544 cells, EU: 2531 373 

cells), Deciduous Broadleaf Forest (NA: 581 cells), Mixed Forest (705 cells), Planted-Cultivated (NA: 374 

6130 cells, EU: 6108 cells), and Urban (32 cells) LULC. In addition, we also define an ‘Ozone 375 

Receptor’ case that corresponds to the grid cells where ozone is monitored at the surface in the 376 

two continents (NA 1551 cells, EU 1656) independently from the underlying LULC type, which can 377 

therefore be different from model to model.  378 

An important finding is already obtained by simply imposing the selection criterion 379 

described above to the data analysed. As can be noted, very few grid cells with the same dominant 380 

LULC type are shared by all models for the same continent. This is a clear indication of the fact that 381 

individual LULC masks, employed in the models, were obtained from substantially different 382 

sources (Table 1).  This raises a significant issue with the generation of models examined in 383 

AQMEII-4 - whether it is acceptable that the characterisation of the land surface differs so much, 384 

when the various masks should be in principle very comparable and given the fact that more 385 

recent sources of this information with a high degree of spatial resolution are available. More 386 

discussion may be found in Section 5 and in our companion paper (Hogrefe et al., 2025, under 387 

review for this issue).  388 

 Figures S5 and S6 show seasonal cycles of the total ozone deposition flux and its 389 

decomposition into the three different effective fluxes. The pathways represented by these 390 
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effective fluxes are (1) lower canopy and soil conductances combined in one factor (LCAN+SOIL) 391 

since some models did not distinguish these two terms, (2) cuticular conductance (CUT) and (3) 392 

stomatal conductance (ST). 393 

 The following features can be appreciated across the model results: 394 

● The magnitude peak of the ozone flux varies considerably from model to model in some 395 

cases (NA8) being almost twice that of others (NA4) for the monthly average. 396 

● Typically, the flux is highest during summer and lowest during winter. In some cases, some 397 

fluxes show nearly constant values throughout the summer season (NA2, NA3, NA5 and NA7). 398 

In others, there is a stronger midsummer peak (NA1, NA4, NA6) in July or August. NA8 399 

shows a double peak shape. Given the deposition scheme is the same in NA8 as NA7 and 400 

NA6, this suggests this double peak is either meteorologically driven, or ozone driven. 401 

● In the EU case more homogeneity appears between EU1 and EU2 behaviours while EU4 402 

shows a slightly different performance at this macro level analysis at least.  403 

The breakdown of the contributions of the specific pathways to the total ozone flux does not 404 

appear to identify any common behaviour neither across models, nor within the same LULC type 405 

nor across time.  It is particularly notable that the relative contributions of the different pathways 406 

vary between models, (e.g., compare the relative magnitude of stomatal flux in NA1 and NA2, 407 

Figure S5(a)). Some models employing the same deposition algorithm nevertheless have different 408 

contributions associated with the different pathways (see NA3 versus NA5, which have the same 409 

deposition algorithm, yet the soil term dominates in NA3 and the cuticle term dominates in NA5).  410 

The latter reflect differences in meteorological drivers; while NA3 and NA5 have the same 411 

deposition algorithm, NA3 runs in “aerosol-aware” direct and indirect feedback mode with the 412 

aerosols modifying meteorology, and NA5 has no such feedbacks.  The differences between these 413 

implementations in part are driven by meteorological differences in the deposition velocities 414 

themselves, as well as concentration differences arising from other model parameterizations aside 415 

from deposition.  416 

We note that an exception to the rule of model differences is for the “planted-cultivated” LULC, 417 

where ST and LCAN+SOIL tend to dominate the flux.  There is also a clear summer maximum in ST 418 

across models (Figure S5e), but the exact seasonality of ST differs significantly between models. 419 

LCAN+SOIL tends to have a bi-modal seasonality for this LULC type – with minima during winter 420 

and during times of maximum ST. CUT tends to be low – with NA1 and NA2 suggesting slightly 421 
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higher values – with weak but noticeable seasonality with a broad growing season peak. To a 422 

certain extent, this pattern in seasonal variation in the different pathways and their contribution 423 

to the total flux also shows up for deciduous forests (Figure S5c), but less so for CMAQ than for 424 

the other models. In general, stomatal flux tends to drive seasonality in the ozone flux, as Clifton 425 

et al. (2023) found for ozone deposition velocity at the individual flux sites, but sometimes there 426 

is contributing seasonality in non-stomatal flux. The models also all differ in the relative 427 

contributions of LCAN+SOIL, CUT, and ST, as also found by Clifton et al. (2023). For example, 428 

cuticular flux is very low in some models (e.g., WRF Chem) but a dominant contributor (about 1/3 429 

except over crops) in NA1 and NA2. Perhaps the primary conclusion is that model behaviour can 430 

be grouped around the model type. In fact, clear similarities can be found among NA3 and NA5 431 

(GEM-MACH (Base) and GEM-MACH (Ops) for several land-use types), as well as NA6, NA7 and 432 

NA8 (WRF-Chem (RIFS), (UPM) and (NCAR) respectively). In the EU case, EU1 and EU2 (both WRF-433 

CHEM) have comparable yearly characteristics, while EU4 (WRF/CMAQ (STAGE) used by the 434 

University of Hertfordshire) shares a similar breakdown with NA2 (WRF/CMAQ (STAGE) run by the 435 

USA-EPA). 436 

Although relevant for operational evaluation, the analysis in Figures S5 and S6 does not easily 437 

reveal the significance of deposition processes and pathways in determining ozone variability 438 

across models. Toward this end, hierarchical and variation partitions are considered in Section 5.  439 

 440 

4. Probabilistic evaluation 441 

The ensemble analysis described in this section aims to identify the models that contribute 442 

to an improved ensemble result and the best combination of models that improves the ensemble 443 

skill. Such analysis is part of the probabilistic evaluation described in Dennis et al. (2010) and 444 

constitutes one of the four pillars of evaluation defined therein and adopted in the overall AQMEII 445 

activity. In past phases of AQMEII, ensemble analysis was also presented as an integral part of the 446 

model evaluation (Solazzo et al. 2012a, Solazzo et al. 2012b, Galmarini et al. 2013, Kioutsioukis et 447 

al. 2014, Im et al. 2015, Solazzo et al. 2015, Kioutsioukis, et al. 2016, Solazzo et al. 2017, Galmarini 448 

et al., 2018). The ensemble mean of the model results has already been presented in the 449 

operational analysis. However, identifying which and how many models contribute to improved 450 

ensemble results is another question to be addressed in this context. The analysis uses ozone 451 

mean concentration measured at the monitoring sites as reference and techniques based on 452 
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model combination to determine the optimal results as described in earlier studies (Solazzo et al. 453 

2012a, Solazzo et al. 2012b, Solazzo et al. 2015, Galmarini et al 2013, Kioutsioukis, et al. 2014, 454 

Kioutsioukis, et al. 2016, Galmarini et al., 2018).  455 

The skill of an ensemble increases if we combine accurate and diverse models (Kioutsioukis 456 

et al., 2014). As shown by Solazzo et al. (2012a) the skill normally reaches a maximum for an 457 

ensemble composed of less than half of the available models and then deteriorates when more 458 

models are added until reaching an asymptotic value. Given m available models, several 459 

combinations of model results in groups of n ≤ m can be produced. In this analysis, we aim at 460 

identifying the minimum number of models that produce the optimal result and which are the 461 

models that produce the highest ensemble skill. We therefore consider all ensembles obtained by 462 

combinations of members in a given group constructed from the m models (i.e., a total of 463 

 ∑ (
𝑚
𝑛

)𝑚
𝑛=1   ensembles where (

𝑚
𝑛

) represents the combination of n models out of a total of m 464 

available). For each combination, we calculate the RMSE, and identify the ensemble with the least 465 

error. Note that these ensembles cover the full range of possible combinations from first-order 466 

(one model ensemble) to mth order (m = 8 models for NA case and m = 4 models for EU). To avoid 467 

the exclusion of yet meaningful results and at the same time to study how the variety of models 468 

analysed combines toward those, we also present the results of ensembles with RMSE within 10% 469 

of the optimal one. Lastly, we determine the frequency with which each model is selected as part 470 

of an optimal ensemble. 471 

In Table 2 the results from NA are presented. The analysis of the 254 ensembles obtained 472 

by combining the models in groups of 1, 2, 3 through 8, gives a RMSE ranging from 3.77 to 11.89 473 

ppb. The results from Solazzo et al. (2012a) are confirmed in this study, therefore in the Table 2 474 

we will present only results up to order 4 (i.e. four members in the ensembles) in the NA case, 475 

since for higher orders the results only deteriorate. The ensembles with the least error are 476 

obtained from the average of two and three models results (i.e. a 2nd and 3rd order ensemble, blue 477 

columns). The models that contribute to these two optimal ensembles are WRF/CMAQ (STAGE) 478 

and GEM-MACH (Ops) for order 2 and WRF/CMAQ (STAGE), GEM-MACH (Base) and GEM-MACH 479 

(ops) for order 3. The second-best ensembles (yellow columns) are also of order 2 and 3 and are 480 

composed of GEM-MACH (Base) and GEM-MACH (Ops) results, and WRF/CMAQ (M3Dry), GEM-481 

MACH (Base) and GEM-MACH (Ops), respectively. In particular, it is worth noting that (a) order 482 

one features two of the models most present in the ensembles and their individual result is still 483 

within 10% of the best higher order ensembles (b) WRF-CMAQ and GEM-MACH are the most 484 
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frequent contributors, (c) WRF-Chem versions (RIFS, UPM, NCAR) are never contributing to any 485 

ensemble set. We note that both WRF/CMAQ  and GEM-MACH (Base and Ops) are used for 486 

operational air-quality forecasting in the USA and Canada, respectively, and hence (1)  they are 487 

frequently evaluated against monitoring data under the principle that new model versions must 488 

improve the forecast before replacing old model versions, (2) the ongoing evaluation process will 489 

tend to select model configurations with the best performance with respect to ozone 490 

concentrations,  (3) this ongoing evaluation process is for the model as a whole, while individual 491 

processes tend to be evaluated based on other data, and are incorporated into the base code, (4) 492 

this process can result in the adoption of processes with compensating errors (c.f. Makar et al. 493 

2014, and note the contrast between deposition velocity performance for NA3, NA5 here versus 494 

the deposition velocity performance in Clifton et al., 2023).  As new data such as the deposition 495 

observations of Clifton et al. (2023) become available, compensating errors come to light, allowing 496 

for corrections and updates to the model codes to be carried out. 497 

The EU ensemble (Table 3) has 4 models, which generates 18 ensembles with RMSEs 498 

ranging from 7.51 to 14.59 μg/m3. Four out of the 18 combinations of 2nd, 3rd and 4th order have 499 

errors within 10% (yellow column) of the optimal combination generated from LOTOS/EUROS and 500 

WRF-Chem (RIFS) for the second order (blue column). No 1st order ensemble has a RMSE smaller 501 

than the 2nd order best ensemble, meaning that no individual model run on the EU case performs 502 

better than the combination of the two shown in the 2nd order grouping. LOTOS/EUROS is present 503 

in all the ensembles created but yet alone is not doing better than when its results are averaged 504 

with those of WRF/CMAQ (STAGE). The latter, operated by the University of Hertfordshire for this 505 

case study, is present 80% of the time as a contributor to the second- and third-best ensembles. 506 

We note that LOTOS/EUROS, like the GEM-MACH and WRF/CMAQ models in NA, provides 507 

operational forecasts of O3, NO2, and PM10, and hence will likely benefit from ongoing evaluation 508 

and selection of process representation that gives the most accurate model results.   Since the 509 

results of all orders are shown in Table 3 we can see that the conclusion of Solazzo et al. (2012a) 510 

is confirmed to the extent that a combination of half of the available members tends to 511 

outperform any single model or larger ensemble of results. It should be clear that the number of 512 

models is only an indication to the extent to which the combination of specific models allows one 513 

to produce the best results with a reduced number of ensemble members. 514 

 515 

 516 

https://doi.org/10.5194/egusphere-2025-1091
Preprint. Discussion started: 19 March 2025
c© Author(s) 2025. CC BY 4.0 License.



17 
 

5. Variance analysis of ozone fluxes and the role of conductances, turbulence, radiation and 517 

wind speed to ozone variability on common LULC types 518 

 519 

At this stage of the analysis it is important to determine the overall role of deposition and 520 

other relevant factors in determining the variability of ozone concentrations at the surface. Having 521 

established which grid cells are representing the same LULC characterisation (Section 3.2), we 522 

proceed with the analysis of deposition data by identifying a set of parameters that are expected 523 

to be relevant in the characterisation of the ozone flux, namely: 524 

● Lower canopy and soil effective flux (LCAN+SOIL) combined as one factor,  525 

● Cuticular effective flux (CUT) 526 

● Stomatal effective flux (ST) 527 

   528 

We also identify the factors that are expected to be relevant in the determination of ozone 529 

concentration variability at the surface, namely: 530 

● Boundary layer height,  531 

● Solar radiation,  532 

● Wind speed,    533 

● Deposition velocities. 534 

 535 

Chemical transformation is a dominant factor in creating ozone variability together with the 536 

abundance of ozone precursors. However, it is challenging to represent the influence of these 537 

factors through a specific variable, although solar radiation can be viewed as a proxy of 538 

photochemical activity. We note that air temperature can also have a significant influence on 539 

photochemical formation of ozone, but air temperature will also influence the deposition 540 

pathways; the two influences would be difficult to differentiate.  Although the analysis will be 541 

performed over all the months of the analysed years, the main focus will be around the summer 542 

months, when the ozone production and mixing ratios are normally at maximum levels, and when 543 

models are performing the worst, at least over NA. 544 

 545 

 546 

 547 
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5.1 Relative relevance of pathway fluxes in ozone flux variability 548 

Variation partitioning of a single response variable (Y, e.g. total O3 flux, or O3 549 

concentration) is based on the adjusted R2 in a regression framework (Peres-Neto et al., 2006; Lai 550 

et al., 2022). For example, the variation partitioning of O3 flux between three sets of predictors 551 

(X1: LCAN+SOIL, X2: CUT, X3: ST) can be achieved through the estimation of the fractions 552 

(represented here by the dummy variables: a, b, c, d, e, f, and g) based on one (Xi), two (Xi, Xj) or 553 

three (Xi, Xj, Xk) variables (Figure S7): 554 

(1)   fractions based on one variable:  555 

[𝑎 + 𝑑 + 𝑓 + 𝑔] = 𝑅𝑌|𝑋1
2  

[𝑏 + 𝑑 + 𝑒 + 𝑔] = 𝑅𝑌|𝑋2
2  

[𝑐 + 𝑒 + 𝑓 + 𝑔] = 𝑅𝑌|𝑋3
2  

 

(1a) 

 556 

(2)   fractions based on two variables:  557 

[𝑎 + 𝑏 + 𝑑 + 𝑒 + 𝑓 + 𝑔] = 𝑅𝑌|(𝑋1,𝑋2)
2  

[𝑎 + 𝑐 + 𝑑 + 𝑒 + 𝑓 + 𝑔] = 𝑅𝑌|(𝑋1,𝑋3)
2  

[𝑏 + 𝑐 + 𝑑 + 𝑒 + 𝑓 + 𝑔] = 𝑅𝑌|(𝑋2,𝑋3)
2  

 

(1b) 

 558 

(3)   fraction based on all three predictor variables:  559 

[𝑎 + 𝑏 + 𝑐 + 𝑑 + 𝑒 + 𝑓 + 𝑔] = 𝑅𝑌|(𝑋1,𝑋2,𝑋3)
2  (1c) 

 560 

Y in equations 1 (a,b,c) is the predictor variable in this case ozone flux. From the above expressions, 561 

we can estimate the sole and shared contributions of each predictor. For example, the sole and 562 

shared fraction of variation explained by X1 are respectively:  563 

𝑠𝑜𝑙𝑒 = [𝑎] = [𝑎 + 𝑏 + 𝑐 + 𝑑 + 𝑒 + 𝑓 + 𝑔] − [𝑏 + 𝑐 + 𝑑 + 𝑒 + 𝑓 + 𝑔] 

𝑠ℎ𝑎𝑟𝑒𝑑 = [𝑑/2 + 𝑓/2 + 𝑔/3] 

(2a) 

(2b) 

 564 

where (similarly for the other fractions): 565 

[𝑑] = [𝑎 + 𝑏 + 𝑐 + 𝑑 + 𝑒 + 𝑓 + 𝑔] − [𝑐 + 𝑒 + 𝑓 + 𝑔] − [𝑎] − [𝑏]  566 

https://doi.org/10.5194/egusphere-2025-1091
Preprint. Discussion started: 19 March 2025
c© Author(s) 2025. CC BY 4.0 License.



19 
 

 The analysis proceeds by carrying out multiple regressions for the equations 1(a) through 567 

1(c); the values of the left-hand side terms that minimize the differences between left and right-568 

hand sides of the equations are then compared - these provide the relative contribution of the 569 

component terms towards the net correlation coefficient between the ozone flux and the three 570 

predictors. 571 

For the sake of synthesis in the main paper, we shall present results of the variance 572 

decomposition analysis for the two most relevant LULC cases (evergreen needle leaf forest and 573 

ozone receptors). The analysis for all other LULC types selected and listed in Section 3.2, is 574 

presented in the Supplement. 575 

Figure 11 presents the contribution to the ozone dry deposition flux variability of the three 576 

effective fluxes (total or ‘sole’ plus ‘shared’: first and third column of plots in each figure) and their 577 

decomposition into ‘sole’ and ‘shared’ fractions (second and fourth column panels) for all months 578 

of 2016 and for the eight models participating in the NA case study for shared cells covered by at 579 

least 85% evergreen needle leaf forests. 580 

Considering the first and third columns of Figure 11 (where the sum of Eqs. 2a and 2b is 581 

presented) we notice that for all models the fractional contributions to ozone flux variance add up 582 

to 1 as expected. For the summer period, we can see that the models can be divided into three 583 

main groups. The first group is where stomatal effective fluxes dominate in defining the ozone flux  584 

variability (WRF/CMAQ (M3Dry), WRF/CMAQ (STAGE)), a second group where the dominant 585 

pathway to ozone flux variability is through the cuticular effective flux (GEM-MACH (Base), GEM-586 

MACH (Ops) and GEM-MACH (Zhang)) and a third group where the main factor is the combined 587 

soil and lower canopy effective flux combined (WRF-Chem (RIFS), WRF-Chem (UPM), WRF-Chem 588 

(NCAR)). This constitutes a significant result that is also in line with those obtained by Clifton et al. 589 

(2023), but extends their finding.  For example, Clifton et al. (2023) show that models have very 590 

different relative partitioning across effective conductances at individual sites.  Our result here 591 

suggests that spatial variability in the ozone flux across the same LULC type is mainly determined 592 

by different flux pathways. Given the fact that the grid cells selected were dominated by the same 593 

land-use type, differences between the three groups can be attributed to substantial differences 594 

in the deposition modules, concentration gradients, and meteorology. In the winter and autumn 595 

months, the contribution to ozone flux variability is equally distributed across the three pathways 596 

for all models for this LULC type.  We also note that the seasonal cycle of the “sole” terms varies 597 

as a function of model.  The stomatal conductance term dominates the CMAQ implementations 598 

https://doi.org/10.5194/egusphere-2025-1091
Preprint. Discussion started: 19 March 2025
c© Author(s) 2025. CC BY 4.0 License.



20 
 

(NA1, NA2) in the summertime, while for the GEM-MACH implementations (NA3, NA4, NA5), 599 

summertime seasonality is mostly driven by the soil + lower canopy term, while for WRF-Chem 600 

implementations (NA6, NA7, NA8), stomatal and soil+lower canopy terms both have a weak 601 

maximum in the summer. 602 

In Figure 11 the results of the decomposition obtained according to equation (2) are 603 

independently presented (columns 2 and 4). For the sake of presenting the results in a clearer way, 604 

the contributions to the variation obtained from equation 2b, are plotted after changing their sign 605 

to better distinguish them from the others; but the total sum of the negative and positive values 606 

should be 1. This more detailed analysis allows us to verify the previous one with additional details. 607 

For example, the predominance of stomatal flux in WRF-CMAQ at the warm season is due to the 608 

sole contribution of stomatal flux whereas at the other seasons the shared contributions 609 

dominate. For GEM-MACH, the importance of the cuticular flux seen earlier arises from its shared 610 

contributions except GEM-MACH (Zhang) where its sole fraction appears equally high throughout 611 

the year. Differences between NA3 and NA5 (which share the same deposition code) reflect 612 

differences in the driving meteorology:  NA3 is a full-feedback version of the model, in which 613 

aerosol direct and indirect effects have been incorporated into the model structure - with the 614 

result that the model meteorology influencing the deposition flux components differs between 615 

the two models (Makar et al., 2015, a,b).  Additionally, NA3 uses very different physical 616 

parameterizations than NA5, such as a forest canopy parameterization which influences vertical 617 

mixing and photolysis rates near the surface (Makar et al., 2017) and a vehicle-induced turbulence 618 

parameterization which affects fresh emissions from vehicles on highways (Makar et al., 2021).   619 

We note that the WRF-Chem models are also being used in feedback mode and have less variation 620 

than the GEM-MACH case, potentially indicating a smaller impact of differing model 621 

parameterizations on the feedback portions of the WRF-Chem code.  Last, for WRF-Chem, the 622 

shared contribution of soil and canopy flux is important all year, but its sole contribution becomes 623 

equally high in the warm season. 624 

Figure 12a shows the same analysis for the EU continent where the picture changes 625 

completely from NA, indicating very different meteorological drivers between the two regions.  626 

This is not unexpected, in that EU meteorology is strongly influenced by the ocean circulation of 627 

the Gulf Stream, while the NA meteorology is over a broad region that has a much broader range 628 

of conditions in a “continental” climate.  In two of the three models (WRF- CHEM), the importance 629 

of soil-lower canopy and stomatal effective fluxes in the warm season (mid spring through 630 
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October) is due to their shared fractions while the sole contribution of the cuticular effective flux 631 

in winter drives the variation of the total O3 flux. The seasonality of the EU stomatal component is 632 

shared with that of NA6, while the EU soil components have a greater degree of seasonality 633 

compared to the NA WRF-Chem models.   The other model -- EU4 (WRF/CMAQ (STAGE)) -- shows 634 

a more even distribution of the stomatal contribution across the year, and a more equal 635 

distribution across the three pathways during the year. EU3 is not presented since no data were 636 

delivered for effective conductances.  637 

From the figures S8-S10 one can deduce that the rest of the land covers (Deciduous 638 

Broadleaf Forest, Mixed Forest, Planted-Cultivated) still exhibit a dominance of stomatal effective 639 

flux during the summer. These LULCs all have a significant deciduous component, and the 640 

summertime dominance is in part due to the wintertime absence of foliage in the more northerly 641 

parts of the model domains.  Depending on the model, cuticular and soil are at times the second 642 

contributor to variability of ozone flux.  643 

The category ‘Ozone Receptor’ groups the results at grid cells containing an ozone sampling 644 

location regardless of the land cover adopted by individual models (Figure 12b for EU and 9 for 645 

NA). It is interesting to notice that the Ozone Receptors case shows a remarkable consistency 646 

across models in terms of the contribution of the different effective fluxes and their variability in 647 

time, a behaviour not seen when performing this analysis for grid cells dominated by specific LULC 648 

types. This can be appreciated from Figure 12 where the evergreen needle-leaf forest case (8a) is 649 

presented back-to-back to the ozone receptor case (8b) for the EU domain. There is some 650 

disagreement for the EU about the stomatal flux contribution during winter (zero or low) and on 651 

the exact partitioning during warm months, but generally all the models show substantial 652 

contributions from the stomatal flux, disagreeing on the exact non-stomatal partitioning. The 653 

consistency for the Ozone Receptors case is also visible across the continents (Figure 13 for the 654 

NA case) where the contribution has a remarkable resemblance across models for seasonality and 655 

the partitioning of the ozone flux variance across the effective fluxes, compared to individual land 656 

use type values. For the NA case, models suggest moderate to strong contributions for LCAN+SOIL 657 

during winter, yet small to moderate contributions during summer; the contribution of cuticular 658 

effective flux tends to be constant and moderate throughout the year, with three models (WRF-659 

CHEM) suggesting smaller contributions in winter; with stomatal effective flux making up the 660 

difference, roughly a third of the total, but sometimes as low as 10% or as high as 50%.  661 

This result requires a number of important considerations: 662 
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1- The remarkable consistency and similarity found among the model results at the 663 

receptor locations could be due to the lack of dominance of any specific LULC type at this subset 664 

of grid cells considered. This would be in agreement with the fact that the location has presumably 665 

been chosen for air quality monitoring activities and is by-design intended to be neutral to any 666 

prevailing process, specifically, here, the removal of pollutants from the atmosphere by local 667 

processes such as deposition, thus making the monitoring location representative of a particular 668 

large region.   669 

2- The variance decomposition into contributions of both sole fluxes and shared fluxes 670 

(columns 2 and 4 of Figure 13 and column 2 in Figure 12b) does not show the same agreement 671 

found for the total fluxes (columns 1 and 3 of Figure 13 and column 1 of Figure 12b). This indicates 672 

that every deposition model maintains a peculiarity in its behaviour for individual land use types, 673 

that is lost in the results when the monitoring station locations are considered.  This suggests that 674 

while the monitoring station locations show the models perform in a similar fashion for mixtures 675 

of LULC types, the model performance for individual land use types (represented by a much 676 

smaller number of stations) may differ significantly.  Given that model performance is judged using 677 

observation station values, this may indicate that deposition algorithms have been inadvertently 678 

tuned towards providing similar results in the regions where mixtures of LULC values are present 679 

- but require single LULC type stations for the evaluation of individual LULC performance.  We note 680 

that this tuning is not intentional, but a product of the purpose for which monitoring stations have 681 

been set up (e.g. human health impacts, and hence closer to human habitations than remote 682 

locations which may have a single LULC) and the availability of infrastructure (roads, electrical 683 

power) for station operations.  This result underscores the importance of land-use specific 684 

deposition sites such as those used in point model deposition velocity analysis in Clifton et al. 685 

(2023, this issue) in evaluating deposition algorithms, and suggests that subsets of monitoring 686 

network stations located in single LULC types should be identified (or constructed if none are 687 

available) in order to further improve model performance within those LULC types.  That is, the 688 

success of the deposition algorithm has historically tended to be as a component of a regional 689 

model and hence will depend on overall model performance and the locations where monitoring 690 

station network data are available – hence the deposition algorithm components may be chosen 691 

in order to improve performance at the locations where observations are available. The result is 692 

that the deposition algorithms are achieving similar results for deposition flux relative to 693 

observations – but sometimes via very different pathways, especially across different LULCs. This 694 
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is in line with suggestions from recent work examining a single model (Silva and Heald, 2018), a 695 

review paper on modelling ozone dry deposition (Clifton et al., 2020a), and the results of the 696 

single-point modelling AQMEII Activity 2 paper (Clifton et al., 2023).  These findings and the above 697 

analysis illustrate a strong need to generate observational datasets which focus on specific 698 

deposition components for model evaluation (e.g., as suggested by Clifton et al. 2020a), the need 699 

for deposition velocity observation sites to evaluate deposition algorithm performance as a 700 

necessary part of deposition algorithm design, and the need, demonstrated above, for monitoring 701 

network locations that represent specific LULCs, to improve model performance in regions where 702 

one LULC dominates. The current evaluation practice with mixed LULC monitoring stations used 703 

for deposition algorithm evaluation prevents progress in algorithm improvement in specific LULCs, 704 

and allows for LULC-specific compensating errors to be missed in deposition algorithm 705 

development.  706 

3- If (1) and (2) can be confirmed one should consider comparing deposition results 707 

obtained at operational monitoring sites with care – the net results of the comparison may be that 708 

the regional models and possibly their deposition fluxes agree – on average, for regions with 709 

multiple land-use types - but the agreement is the result of regional model evaluation procedures 710 

as opposed to mechanistic deposition velocity algorithm evaluation that is LULC-specific. 711 

Furthermore, this may give an appearance of agreement among regional models that may be 712 

illusory, since in grid cells with shared dominant LULC types more disagreement has been 713 

demonstrated in the above analysis. An important implication of this finding is the need to evaluate 714 

regional models using both single-land-use and multiple-land-use type stations in the future, and for 715 

representation in single-land-use type locations to be a consideration in monitoring network design. 716 

 717 

5.2 Non-linear contributions of other factors to the ozone concentration variance 718 

The analysis of the non-linear contributions to the ozone variance has been conducted by 719 

introducing other factors considered to be relevant in influencing ozone variability at the surface 720 

level, namely: boundary layer height, solar radiation, wind speed, and deposition velocity. In a 721 

way, this analysis allows us to determine the role of deposition in relation to other factors 722 

influencing the variation of ozone concentrations at the Evergreen Needleleaf Forest cells and 723 

therefore estimate its relevance as a driver of ozone variance in a regional scale model. Figure 14 724 

presents the analysis for the NA case while Figure 15 shows results for the EU case. 725 
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From Figure 14 we firstly notice that the selected components have a very relevant role in the 726 

determination of the surface ozone variance as, overall, they account on average for 60 to 80% of 727 

ozone variance. The remaining portion can be attributed to variations in emissions and chemical 728 

reactions that cannot easily be represented by a specific variable, or to other factors not 729 

considered in this analysis. Throughout the 8 models participating in the NA case study, we can 730 

notice the dominance of radiation followed by PBL height and deposition velocity whereas wind 731 

speed seems to be relevant throughout the year only for three of the eight (WRF/CMAQ (M3Dry), 732 

WRF/CMAQ (STAGE), GEM-MACH (Zhang)).  We note that correlation does not necessarily imply 733 

causation - the wind speed dependence effects noted here may reflect model dependence on the 734 

friction velocity, which can be expressed as a function of the wind speed, logarithmic profile, and 735 

surface roughness.  The contribution of wind velocity across models is very scattered in time 736 

though contributing on average for 30% of the variability. In some models it appears to be among 737 

the dominant factors in winter more than in summer (WRF/CMAQ (STAGE), WRF-Chem (RIFS), 738 

WRF-Chem (UPM), GEM-MACH (Zhang), WRF/CMAQ (M3Dry)). While WRF-Chem (UPM) uses the 739 

CBMZ mechanism (see Makar et al., 2024, this issue), the deposition implementation for CBMZ 740 

accounts only for 4 seasons, while the other two WRF-Chem models (RIFS and NCAR) employ the 741 

MOZART chemical mechanism, for which the deposition algorithm has tabulated entries on a 742 

monthly basis which are used in dry deposition.  That is, the WRF-Chem dry deposition 743 

implementations which are linked to different gas-phase mechanisms have differing degrees of 744 

seasonal resolution.  Some of the seasonal differences between NA3 and NA5 implementations of 745 

GEM-MACH also relate to seasonality of input information, with NA3 making use of gridded 746 

monthly satellite-derived leaf-area index values, and NA5 making use of tabulated 5-season values 747 

by LULC.  It appears that in North America a seasonality in the contribution of the various 748 

components is more evident. The differences between GEM-MACH (Base) and GEM-MACH (Ops) 749 

can be attributed at least partially to the meteorology change associated with feedbacks, but also 750 

may partially result in the differing seasonality in LAI inputs. The no-feedback model (GEM-MACH 751 

(Ops)) has less ozone variability associated with wind speed, and more with solar radiation, 752 

compared to the feedback model GEM-MACH (Base); feedbacks exacerbate meteorological 753 

variability.  GEM-MACH (Base) versus GEM-MACH (Zhang) shows how much the deposition 754 

scheme can affect the variability, via the feedbacks: GEM-MACH (Base) and GEM-MACH (Zhang) 755 

are otherwise identical models. This quantifies the impact of feedbacks on meteorology and hence 756 

deposition velocity variance.  WRF-Chem is also a  feedback model as well, and the impact of the 757 
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feedbacks is showing up as differences in the relative importance of meteorology versus ozone 758 

deposition velocity itself between the different implementations.  759 

In EU we see from Figure 15a that the contributions have a greater degree of scatter than 760 

for NA. WRF-Chem (UPM) and WRF/Chem (RIFS) share an important contribution of deposition 761 

velocity in February and of PBL in April, November and December. Interesting is the fact that across 762 

the year the components account for a smaller portion of the total variance (<50%) than in the NA 763 

case. This could be due to drastically different conditions and the dominance of variability 764 

emissions (and consequently chemistry) on the ozone variability. Each of the models are using 765 

different driving meteorology, but the variation in observed conditions across EU may be less than 766 

across NA, as noted above.   Interesting is the case of March for WRF-Chem (RIFS) where PBL 767 

height, solar radiation, wind speed and deposition velocity contribute to less than 5% of the ozone 768 

variance.  Another difference between the NA and EU case studies is the contribution of deposition 769 

compared to the other processes in determining ozone variability. In NA, deposition velocity 770 

contributes 10 to 25% to ozone variability during summer and 10 to 50% during winter. In the EU, 771 

however, the summer contribution is much lower and in February two models out of four show a 772 

70% contribution.  773 

All these results clearly point toward a relevance of deposition in determining ozone 774 

variability and concentrations at the surface and yet they also show that important differences are 775 

present in the process description in individual models that can greatly influence the outcome.  776 

When the same analysis is performed at the O3 Receptor cells, we can clearly demonstrate 777 

hypothesis (1) and possibly (2) presented in the previous section. Figures 12 for the NA case and 778 

11b for the EU case show the results for the O3 receptor cells. The eight models in the NA case 779 

clearly show that at those grid cells the contribution of deposition velocity to ozone variability is 780 

generally much smaller compared to the results for grid cells with specific common LULC types, 781 

for example with respect to Evergreen Needle-leaf Forests. Despite this general trend, NA1, 2, 3 782 

and 5 (WRF/CMAQ (M3Dry), WRF/CMAQ (STAGE), GEM-MACH (Base), GEM-MACH (Ops) 783 

respectively) still show that during winter, dry deposition can be a significant contributor to ozone 784 

and receptor locations. This result also confirms the hypothesis made at (3) in the previous section; 785 

the operational ozone monitoring sites are not suitable for the analysis of deposition results for 786 

specific LULC classes. A similar conclusion can be drawn for the EU case (Figure 12b) which is 787 

presented back-to-back with the evergreen needle-leaf forest case. To corroborate the last 788 

statement, Figure 17 shows a comparison of the fraction of the entire NA common domain 789 
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(excluding grid cells dominated by water, i.e. water fraction > 0.5) covered by each LU type to the 790 

LU distribution of all grid cells corresponding to O3 receptor locations (EU results are shown as 791 

Figure S10 in the SM). As can be noticed, existing O3 receptor locations are characterised mainly 792 

by Planted/Cultivated, Shrub land and urban LULC with a 10% coverage of deciduous broadleaf 793 

forest (Figure 17b).  At these locations all models appear to have the same distribution of the main 794 

LULC type apart from Shrubland (NA3, 4 and 5 20% more abundant) and Planted/Cultivated (same 795 

models 10 % less abundant). However, the distribution of LULC from the overall NA common 796 

model domain (Figure 17a) demonstrates that the current receptor site LULC poorly represent the 797 

relative amount of land use occurring throughout the domain, with, for example, much higher 798 

Evergreen Needleleaf and Grassland fractions, and much lower urban land use LULC in the all-799 

domain data of Figure 17a compared to the observing station values of Figure 17b. 800 

 In this respect, it is important also to notice that in spite of the formal differences among 801 

deposition modules (Galmarini et al., 2021), in conditions of uniform LU characteristics and 802 

dominance of urban and Planted/Cultivated LULC types, the models tend to produce comparable 803 

results in terms of contributors to ozone variability. This result further underlines the importance 804 

of a correct and uniform characterization of the both the input LULC data and the extent to which 805 

monitoring station data reflect LULC across the domain, both of which are driving factors in 806 

determining the differences among deposition modules.  807 

 808 

6. Conclusions 809 

An operational evaluation has been conducted on the models that took part to the 810 

AQMEII4 activity (Galmarini et al., 2021). A total of 12 models were analysed, 8 of which were run 811 

on a NA continental air quality simulation of the year 2016 and the rest were run over Europe for 812 

the year 2010. The scope of the evaluation is to determine the level of agreement of the models 813 

against available measurements and how they compare with one another. This is normally 814 

referred to as operational evaluation and according to Dennis et al, (2010) is the first necessary 815 

step prior to any more detailed evaluation or inter-comparison of model results. The focus of the 816 

fourth phase of AQMEII is the analysis of the performance of deposition schemes in regional scale 817 

models, therefore the operational evaluation has been performed having that goal in mind. Ozone 818 

deposition, in particular, is the focus of this analysis. Ozone average annual concentration errors 819 

ranged between 10 and 30% in NA and between 10 and 15% in EU. Errors for NO and NO2 were 820 
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on the order of 5-10% and 10-15% respectively in NA and 15% for both pollutants in EU. The sub 821 

regional analysis confirmed these findings, with the expected sub regional variability related to 822 

different emission patterns. The models can be distinctively grouped by performance with 823 

WRF/CMAQ (M3Dry), WRF/CMAQ (STAGE), GEM-MACH (Base) and GEM-MACH(Ops) showing a 824 

better overall capacity of predicting ozone concentrations in NA followed by GEM-MACH (Zhang) 825 

and WRF-Chem (RIFS), while WRF-Chem (RIFS) and WRF-Chem (NCAR) show larger errors 826 

throughout the year and the domain. In the EU case LOTOS/EUROS outperforms the two WRF-827 

Chem versions (RIFS and UPM) and WRF/CMAQ (STAGE). This result is also very evident from the 828 

probabilistic analysis where all combinations of possible ensembles were calculated, and reflects 829 

the models which undergo regular operational evaluation against observations.  830 

As far as the deposition is concerned, an analysis of the variance contribution of the 831 

different pathways to the variance of the overall ozone deposition fluxes has been conducted. All 832 

cells covered with at least 85% of the same land-use types were considered in this analysis. Across 833 

grid cells containing mostly needleleaf forests over the USA, the main example used in our study, 834 

the analysis shows the mixed response of the various deposition schemes adopted in the regional 835 

scale models; one group of models  shows a prevailing contribution of the stomatal effective flux 836 

in determining spatial ozone flux variability, one shows the three pathways contribute rather 837 

equally, and the last group of models for which the lower canopy and soil effective flux is the 838 

prevailing contributor. Thus, models are simulating very different drivers of ozone flux variability 839 

in space, even for the same land use type. The contribution to ozone variability of wind speed, 840 

deposition velocity, solar radiation and boundary layer height was also investigated.  841 

When the above-mentioned analysis was also performed for all grid cells where ozone 842 

monitors were present regardless of the LULC type, a remarkable result was found. Regardless of 843 

the EU or NA case considered, all the differences among models found for specific LULC types 844 

largely disappeared, showing a more uniform behaviour across models. This aspect was 845 

demonstrated to be attributable to a minor contribution of deposition at those sites in 846 

determining the ozone variability when compared with other factors. Other factors contributing 847 

to this behaviour are the presence of predominant LULC types for which deposition is relatively 848 

low and the uniform distribution of those types and other LULC types across the models at the 849 

observation station locations.  850 

https://doi.org/10.5194/egusphere-2025-1091
Preprint. Discussion started: 19 March 2025
c© Author(s) 2025. CC BY 4.0 License.



28 
 

This result allows us to present important conclusions. The first conclusion is that the 851 

evaluation of deposition processes should not be conducted only at operational ozone monitoring 852 

sites. The latter’s characteristics are selected due to other considerations aside from deposition 853 

velocity evaluation, and may be unsuitable for deposition algorithm evaluation, leading to an 854 

illusory agreement of models as far as deposition is concerned. Therefore, specific sites with a 855 

predominance of LULCs with higher deposition should be selected from existing monitoring 856 

stations, or added to existing monitoring networks, for deposition-focused model evaluation. The 857 

second conclusion is a recurring theme throughout AQMEII4 regional modelling studies to date 858 

(e.g., Hogrefe et al, 2025, Makar et al., 2024), namely the necessity for a harmonisation of LULC 859 

data across regional scale air quality models, as a large diversity in the characterization of the 860 

surface is still present among all models, and this diversity has a significant impact on model 861 

performance. Considering the existence of detailed information in space and time of LULC (e.g., 862 

Copernicus Land Monitoring services, USGS, LandSat, etc.), we find the lack of agreement between 863 

models on the input land use data of great concern and anachronistic. Any interpretation of the 864 

behaviour of deposition schemes will be impaired by the lack of agreement of LULC masks, and 865 

will inevitably include an inherent uncertainty difficult to quantify. The present situation is 866 

comparable to a hypothetical one where models use different topographies or terrain elevations 867 

to the extent of including (excluding) specific reliefs or mountain ranges in (from) the domain. If 868 

there is an ambition to improve the performance of regional scale models in terms of deposition 869 

processes (effectively a sink in the concentration budget), the selection of up-to-date and common 870 

LULC data is a fundamental and necessary prerequisite. Considering the advances in the 871 

characterisation of land surface at very high spatial and temporal resolutions (metre scale), such 872 

effort cannot be further delayed and should be taken on prior to any new model evaluation or 873 

intercomparison of deposition processes. 874 
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Table 1: Institutions in charge and the models used in AQMEII4 case studies.  1122 

Abbreviation Modeling 

System 

(dep. scheme) 

Domain Modeling Group Dry 

Deposition 

Scheme 

LU for Dry 

Deposition 

Scheme 

NA1 (10700) WRF/CMAQ 

(M3Dry) 

NA U.S. EPA M3Dry MODIS 

NA2 (10701) WRF/CMAQ 

(STAGE) 

NA U.S. EPA STAGE AQMEII4 

(mapped from 

MODIS) 

NA3 (10703) GEM-MACH 

(Base) 

NA Environment and 

Climate Change 

Canada 

Wesely Robichaud 

(Robichaud et al. 

2020) 

NA4 (10704) GEM-MACH 

(Zhang) 

NA Environment and 

Climate Change 

Canada 

Zhang Zhang et al. 

(2003) 

NA5 (10705) GEM-MACH 

(Ops) 

NA Environment and 

Climate Change 

Canada 

Wesely Robichaud 

(Robichaud et al. 

2020) 

NA6 (10702) WRF-Chem 

(RIFS) 

NA Research Center for 

Sustainability (RIFS) 

Wesely USGS24 

NA7 (10708) WRF-Chem 

(UPM) 

NA Technical University 

of Madrid (UPM) 

Wesely USGS24 

NA8 (10709) WRF-Chem 

(NCAR) 

NA National Center for 

Atmospheric 

Research / Yonsei 

University 

Wesely USGS24 

EU1 (10702) WRF-Chem 

(RIFS) 

EU Research Center for 

Sustainability (RIFS) 

Wesely  CORINE 33  

EU2 (10708) WRF-Chem 

(UPM) 

EU Technical University 

of Madrid (UPM) 

Wesely USGS24 

EU3 (10707) LOTOS/EUROS  EU TNO DEPAC Van Zanten, M. 

C., 2010. 

EU4 (10710) WRF/CMAQ 

(STAGE) 

EU University of 

Hertfordshire 

STAGE MODIS + 

extended urban 

 1123 

 1124 
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Table 2: NA case. For all available combinations of models ( 
𝑚
𝑛

  ) analysed, the table presents those that produce the 1126 

minimum errors (blue columns) as well as all other combinations that fall within 10% of that minimum error (yellow 1127 

and orange columns). The minimum RMSE of 3.77 ppb is achieved by the second order  (( 
8
2

  ) , all combinations of 2 1128 

models out of 8) combination of WRF/CMAQ (STAGE) and GEM-MACH (Ops) as well as the third order (( 
8
3

  ) , all 1129 

combinations of 3 models out of 8) combination of  WRF/CMAQ (STAGE), GEM-MACH (Base), and GEM-MACH (Ops) 1130 

. The combinations with the second lowest RMSE are shown in the orange columns. The frequency column shows the 1131 

number of times each model was part of an ensemble weighted by the number of ensembles considered. 1132 

MODEL Model code Frequency (%) 
Order of Model Combination 

1 2 3 4 

WRF/CMAQ (M3Dry) NA1 (10700) 36.4    X    X X X  

WRF/CMAQ (STAGE) NA2 (10701) 54.5   X  X  X X  X X 

GEM-MACH (Base) NA3 (10703) 63.6  X   X X X  X X X 

GEM-MACH (Zhang) NA4 (10704)             

GEM-MACH (Ops) NA5 (10705) 81.8 X  X X  X X X X X X 

WRF-Chem (RIFS) NA6 (10702) 9.1           X 

WRF-Chem (UPM) NA7 (10708)             

WRF-Chem (NCAR) NA8 (10709)             

RMSE (ppb) 
 

 
3.9

0 

3.9

5 

3.7

7 

3.8

6 

4.0

2 

3.8

3 

3.7

7 

4.0

4 

3.8

3 

3.9

3 

4.1

0 

 1133 

Table 3: Same as Table 2a for the EU case 1134 

MODEL Model code Freq. (%) 

Order of Model Combination 

2 3 4 

WRF-Chem (RIFS) EU1 (10702) 60 X  X  X 

WRF-Chem (UPM) EU2 (10708) 40    X X 

LOTOS/EUROS  EU3 (10707) 100 X X X X X 

WRF/CMAQ (STAGE) EU4 (10710) 80  X X X X 

RMSE (ugm-3)   7.51 8.15 7.92 8.11 8.17 

 1135 
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(b) 

 1136 

Figure 1: Annual average of ozone at all available monitoring stations in North America for 2016 (a) [ppb] 1137 

and Europe for 2010 (b) [μg m-3]. 1138 
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 1140 

Figure 2: Individual model ozone RMSE calculated over the whole year (2016) over NA. From NA1 through 1141 

NA8: WRF/CMAQ (M3Dry), WRF/CMAQ (STAGE), GEM-MACH (Base), GEM-MACH (Zhang), GEM-MACH 1142 

(Ops), WRF-Chem (RIFS), WRF-Chem (UPM), and WRF-Chem (NCAR). Units are in ppb. 1143 
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 1144 

Figure 3: Individual model ozone MB calculated over the whole year (2016) over NA. From NA1 through 1145 

NA8: WRF/CMAQ (M3Dry), WRF/CMAQ (STAGE), GEM-MACH (Base), GEM-MACH (Zhang), GEM-MACH 1146 

(Ops), WRF-Chem (RIFS), WRF-Chem (UPM), and WRF-Chem (NCAR). Units are in ppb. 1147 

 1148 
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 1150 

Figure 4: Individual model ozone RMSE calculated over the whole year (2010) over EU. From EU1 through 1151 

EU4: WRF-Chem (RIFS), WRF-Chem (UPM), LOTOS/EUROS, WRF/CMAQ (STAGE). Units are in μg/m3. Colour 1152 

bars are set to twice the range used in Figure 2 to allow for a visual comparison across continents, 1153 

accounting for the conversion factor of 1.96 between the different units. 1154 

 1155 

 1156 
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 1157 

Figure 5: Individual model ozone MB calculated over the whole year (2010) over EU. From EU1 through 1158 

EU4: WRF-Chem (RIFS), WRF-Chem (UPM), LOTOS/EUROS, WRF/CMAQ (STAGE). Units are in μg/m3. Colour 1159 

bars are set to twice the range used in Figure 2b to allow for a visual comparison across continents, 1160 

accounting for the conversion factor of 1.96 between the different units. 1161 

 1162 

 1163 

 1164 
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 1165 
(a)       (b) 1166 

Figure 6: Individual model ozone MB (top panels) and RMSE (bottom panels) calculated over the whole 1167 

year over NA (a) and EU (b). NA case units: ppb, EU: μg/m3 1168 

 1169 

 1170 

 1171 
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 1173 

Figure 7: Average monthly (left panels) and diurnal (right panels) cycles of ozone, NO, and NO2 [ppb] for 1174 

the 2016 NA case study. Thin coloured lines: models; red dots: observations; black line: multi-model mean. 1175 
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 1177 

Figure 8: Average monthly (left panels) and diurnal (right panels) cycles of ozone, NO, and NO2 [μg m-3] for 1178 

the 2010 EU case study. Thin coloured lines: models; red dots: observations; black line: multi-model mean.  1179 

  1180 

https://doi.org/10.5194/egusphere-2025-1091
Preprint. Discussion started: 19 March 2025
c© Author(s) 2025. CC BY 4.0 License.



48 
 

 1181 

 1182 

Figure 9: Monthly average cycles of O3 concentrations in [ppb] as calculated in sub-regions R1-R4 over the 1183 

NA domain. Thin coloured lines: models; red dots: observations; black line: multi-model mean. 1184 
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 1186 

Figure 10: Monthly average cycles of O3 concentrations in [μg m-3] as calculated in sub-regions R1-R4 over 1187 
the EU domains. Thin coloured lines: models; red dots: observations; black line: multi-model median. 1188 
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 1190 

Figure 11: NA case study at 1544 shared cells covered by at least 85% of needle-leaf forest. Panels in 1st 1191 
and 3rd column: variance partition (VP) of ozone dry deposition flux into the individual importance (i.e. total 1192 
effect) of (1) lower canopy and soil effective fluxes combined in one factor, (2) cuticular effective flux and 1193 
(3) stomatal effective flux. Panels in 2nd and 4th column: Split of the individual importance of the effective 1194 
fluxes into sole and shared contributions. The shared effects are displayed with negative numbers. For the 1195 
sake of making the pictures easier to read, the explicit names of the modelling systems are reported in the 1196 
figure.  1197 
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 1199 

(a) (b) 

 1200 

Figure 12: (a) EU case study at 2531 shared cells covered by at least 85% of needle-leaf forest. Panels in 1st 1201 
column: variance partition (VP) of ozone dry deposition flux into the individual importance (i.e. total effect) 1202 
of (1) lower canopy and soil effective fluxes combined in one factor, (2) cuticular effective flux and (3) 1203 
stomatal effective flux. Panels in 2nd column: Split of the individual importance of the effective fluxes into 1204 
sole and shared contributions. The shared effects are displayed with negative numbers. For the sake of 1205 
making the pictures easier to read, the explicit names of the modelling systems are reported in the figure. 1206 
(b) Same as a) but at the location of ozone receptors in EU (1551 shared cells). 1207 
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 1209 

Figure 13: Same as 7 but at the location of ozone Receptors in NA (1551 shared cells). 1210 
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 1212 

Figure 14: NA case study at 1544 shared cells covered by at least 85% of needle-leaf forest. Variance 1213 

partition (VP) of ozone concentration for each model into the individual importance (i.e. total effect) of 1214 

wind speed, PBL height, solar radiation, and deposition velocity. For the sake of making the pictures easier 1215 

to read, the explicit names of the modelling systems are reported in the figure. 1216 
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(a) 

 

(b) 

 1218 

Figure 15: (a) EU case study at 2531 shared cells covered by at least 85% of needle-leaf forest. Variance 1219 

partition (VP) of ozone concentration for each model into the individual importance (i.e. total effect) of 1220 

wind speed, PBL height, solar radiation, and deposition velocity. For the sake of making the pictures easier 1221 

to read, the explicit names of the modeling systems are reported in the figure. (b) Same as a) but at the 1222 

location of the ozone receptors in EU (1551 shared cells). 1223 

  1224 

https://doi.org/10.5194/egusphere-2025-1091
Preprint. Discussion started: 19 March 2025
c© Author(s) 2025. CC BY 4.0 License.



55 
 

 1225 

Figure 16: Same as 10 but at the location of ozone receptors in NA (1551 shared cells).  1226 

  1227 

https://doi.org/10.5194/egusphere-2025-1091
Preprint. Discussion started: 19 March 2025
c© Author(s) 2025. CC BY 4.0 License.



56 
 

(a) 1228 

 (a) 1229 

 1230 

  1231 

https://doi.org/10.5194/egusphere-2025-1091
Preprint. Discussion started: 19 March 2025
c© Author(s) 2025. CC BY 4.0 License.



57 
 

 1232 

 (b) 1233 

(b) 1234 

Figure 17: (a) Fraction of entire NA common domain (excl. grid cells dominated by water, i.e. water fraction 1235 

> 0.5) covered by each LU type. (b) Fraction of all grid cells corresponding to O3 receptor locations covered 1236 

by each LU type. 1237 
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